

Technical Architecture

System Design & Published Research Foundation

January 2026 | CONFIDENTIAL

Architecture Overview

Bio-Risk™ employs a three-tier architecture designed for enterprise deployment, privacy preservation, and carrier integration. The system implements published HRV-fatigue detection methodologies using validated clinical-grade sensors.

Tier	Component	Function
Edge	Wearable Sensor	Continuous HRV capture, on-device preprocessing
Cloud	Bio-Risk™ Platform	CARI calculation, aggregation, carrier dashboards
Integration	Carrier API	RESTful endpoints for PolicyCenter/Guidewire

Sensor Validation (Published Research)

The platform is sensor-agnostic but validated with the Polar Verity Sense, which has extensive peer-reviewed validation against clinical ECG standards:

Study	Finding	Citation
PLoS ONE (2019)	ICC = 0.99 vs ECG across exercise intensities	Gilgen-Ammann et al.
J Sports Sciences (2025)	r = 0.93 correlation; MAPE = 2.8%	Occupational validation
JMIR Cardio (2025)	"Highly accurate and reliable"	Wearable comparison
Scientific Reports (2023)	"Both valid and reliable for HR measurement"	Nature portfolio

Sensor Specifications

- Device: Polar Verity Sense (or equivalent validated optical HR sensor)
- Cost: ~\$90/unit at scale
- Battery: 20+ hours operational
- Connectivity: Bluetooth LE 5.0
- Sampling: 1Hz continuous HRV (RR intervals)

HRV-Fatigue Detection (Published Research)

The scientific basis for HRV-based fatigue detection is established in peer-reviewed literature. Bio-Risk™ implements these validated methodologies:

Study	Method	Accuracy	Citation
Scientific Reports (2022)	SVM on HRV features	84.3% AUC	Nature, Matuz et al.
PMC (2022)	LightGBM on HRV	85.5%	Chen et al.

J Biomedical Informatics (2020)	Deep learning on 5-min HRV	83%	Bent et al.
---------------------------------	----------------------------	-----	-------------

Bio-Risk™ implements the 84-86% published baseline. Our federated learning architecture enables continuous model improvement as the platform scales, with accuracy gains compounding across carrier deployments without compromising worker privacy.

System Performance Specifications

Metric	Specification	Basis
Detection Accuracy	84-86% (published baseline)	Peer-reviewed literature
False Positive Approach	Dual-threshold AND-gate validation	Designed to minimize
Latency	<500ms edge-to-dashboard	Architecture requirement
Uptime Target	99.9%	AWS/Azure redundancy
Data Retention	Configurable per carrier policy	Compliance flexibility

Privacy-First Architecture

Bio-Risk™ is designed with privacy as a core architectural principle, addressing carrier concerns about biometric data liability:

- **Edge Processing:** Raw biometric data processed on-device; only CARI scores transmitted
- **De-Identification:** Carriers receive Worker IDs only, no PII or raw biometrics
- **Federated Learning:** Model improvements without centralizing sensitive data—creates data network effect
- **Compliance Path:** Architecture designed for GDPR, CCPA, BIPA, HIPAA alignment
- **Security Roadmap:** SOC 2 Type II certification targeted 2026

Intellectual Property

Provisional Patent US 63/919,896 (November 2025) covers the integrated system architecture, CARI algorithm, privacy-preserving data flows, and PANT intervention protocols. PCT international filing planned within 12-month priority window.

References

1. Matuz, A., et al. (2022). ML models for mental fatigue prediction from HRV. *Scientific Reports (Nature)*. doi:10.1038/s41598-022-24415-y
2. Chen, S., et al. (2022). HRV-Based Physical Fatigue Assessment. *PMC*. doi:10.3390/s22093199
3. Gilgen-Ammann, R., et al. (2019). Validation of Polar OH1. *PLoS ONE*. doi:10.1371/journal.pone.0217547
4. Bent, B., et al. (2020). Deep learning with HRV for health prediction. *J Biomedical Informatics*.
5. JMIR Cardio (2025). Wrist-worn wearable HR sensor validation.
6. PMC (2024). Federated learning for privacy-preserving health data. doi:10.3390/s24154994